s — Approximations of Special Functions s17dgc

NAG C Library Function Document

nag complex airy ai (s17dgc)

1 Purpose

nag_complex airy ai (s17dgc) returns the value of the Airy function Ai(z) or its derivative Ai'(z) for
complex z, with an option for exponential scaling.

2 Specification
void nag_complex_airy_ai (Nag_FunType deriv, Complex z, Nag_ScaleResType scal,
Complex *ai, Integer *nz, NagError *fail)

3 Description

nag_complex airy ai (s17dgc) returns a value for the Airy function Ai(z) or its derivative Ai'(z), where z
is complex, —7 < arg z < m. Optionally, the value is scaled by the factor VA3,

The function is derived from the routine CAIRY in Amos (1986). It is based on the relations

K —zK.

Ai(2) :w, and Ai'(z) 2227/3(10), where K, is the modified Bessel function and
™3 m™/3

w=22/2/3.

For very large |z|, argument reduction will cause total loss of accuracy, and so no computation is
performed. For slightly smaller |z|, the computation is performed but results are accurate to less than half
of machine precision. If Rew is too large, and the unscaled function is required, there is a risk of
overflow and so no computation is performed. In all the above cases, a warning is given by the function.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265-273

5 Parameters

1: deriv — Nag FunType Input
On entry: specifies whether the function or its derivative is required.
If deriv = Nag_Function, Ai(z) is returned.
If deriv = Nag Deriv, Ai'(z) is returned.

Constraint: deriv = Nag_Function or Nag_Deriv.

2: z — Complex Input

On entry: the argument z of the function.

3: scal — Nag_ScaleResType Input
On entry: the scaling option.

If scal = Nag_UnscaleRes, the result is returned unscaled.

[NP3645/7] s17dge.1

s17dgc NAG C Library Manual

If scal = Nag_ScaleRes, the result is returned scaled by the factor VA,

Constraint: scal = Nag_UnscaleRes or Nag_ScaleRes.

4 ai — Complex * Output

On exit: the required function or derivative value.

5: nz — Integer * Output

On exit: nz indicates whether or not ai is set to zero due to underflow. This can only occur when
scal = Nag_UnscaleRes.

If nz = 0, ai is not set to zero.

If nz =1, ai is set to zero.

6: fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_OVERFLOW_LIKELY

No computation because w.re too large, where w = (2/3) x z3/%.

NE_TERMINATION_FAILURE

No computation — algorithm termination condition not met.

NE_TOTAL_PRECISION_LOSS

No computation because abs(z) = (value) > (value).

NW_SOME_PRECISION_LOSS

Results lack precision because abs(z) = (value) > (value).

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

All constants in nag_complex_airy ai (s17dgc) are given to approximately 18 digits of precision. Calling
the number of digits of precision in the floating-point arithmetic being used ¢, then clearly the maximum
number of correct digits in the results obtained is limited by p = min(¢, 18). Because of errors in argument
reduction when computing elementary functions inside nag complex_airy ai (s17dgc), the actual number
of correct digits is limited, in general, by p — s, where s ~ max(1,|log,|2||) represents the number of
digits lost due to the argument reduction. Thus the larger the value of |z|, the less the precision in the
result.

Empirical tests with modest values of z, checking relations between Airy functions Ai(z), Ai'(z), Bi(z) and
Bi'(2), have shown errors limited to the least significant 3 — 4 digits of precision.

s17dgc.2 [NP3645/7]

s — Approximations of Special Functions s17dgce

8 Further Comments

Note that if the function is required to operate on a real argument only, then it may be much cheaper to call
nag_airy ai (sl7agc) or nag airy ai deriv (s17ajc).

9 Example

The example program prints a caption and then proceeds to read sets of data from the input data stream.
The first datum is a value for the parameter deriv, the second is a complex value for the argument, z, and
the third is a character value used as a flag to set the parameter scal. The program calls the function and
prints the results. The process is repeated until the end of the input data stream is encountered.

9.1 Program Text

/* nag_complex_airy_ai (sl7dgc) Example Program
* Copyright 2002 Numerical Algorithms Group.

* Mark 7, 2002.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)

{
Complex z, ai;
Integer nz;
Nag_ScaleResType scal_enum;
Nag_FunType deriv_enum;
char deriv, scal;

Integer exit_status = EXIT SUCCESS;
NagError fail;

INIT_FAIL(fail);
/* Skip heading in data file */

Vscanf ("sx["\nl") ;
Vprintf ("sl7dgc Example Program Results\n");

Vprintf (" deriv Z scal ai nz\n") ;
while (scanf (" ’'%c’ (%1f,%1f) ’'%c’3s*["\n] ",
&deriv, &z.re, &z.im, &scal) != EOF)
{
/* Convert scal character to enum */
if (scal == ’'s’)
{
scal_enum = Nag_ScaleRes;
b
else if (scal == 'u’)
{
scal_enum = Nag_UnscaleRes;
b
else
{
Vprintf ("Unrecognised character for Nag_ScaleResType type\n");
exit_status = -1;
goto END;
b
/* Convert deriv character to enum */
if (deriv == 'f’)
{
deriv_enum = Nag_Function;
b
else if (deriv == ’4d’)
{

[NP3645/7] s17dge.3

s17dge

3
END:

NAG C Library Manual

deriv_enum = Nag_Deriv;

}
else
{
Vprintf ("Unrecognised character for Nag_FunType type\n");
exit_status = -1;
goto END;
}
sl7dgc(deriv_enum, z, scal_enum, &ai, &nz, &fail);
if (fail.code == NE_NOERROR)
Vprintf (" "sc’ (%7.3f,%7.3f) ’'%c’ (%7.3f,%7.3f) %ld\n",
deriv, z.re, z.im, scal, ai.re, ai.im, nz);
else
{
Vprintf ("Error from sl7dgc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

return exit_status;

}

9.2 Program Data

sl7dgc Example Program Data

rfr
rEr
rfr
rEr
rqr’

(0.3, 0.4) u’
(0.2, 0.0) a’
(1.1, -6.6) "u’
(1.1, -6.06) s’
(-1.0, 0.0) u’ - Values of deriv, z and scal

9.3 Program Results

sl7dgc Example Program Results

deriv Z scal ai nz
"¢’ (0.300, 0.400) 'u’ (0.272, -0.100) O
£ (0.200, 0.000) 'u" (0.304, 0.000) O
r£r (1.100, -6.600) "u’ (-43.663,-47.903) 0
rf£r (1.100, -6.600) 's’ (0.1le65, 0.060) 0
'@4” (-1.000, 0.000) 'u’" (-0.010, 0.000) O

s17dgc.4 (last) [NP3645/7]

	s17dgc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	deriv
	z
	scal
	ai
	nz
	fail

	6 Error Indicators and Warnings
	NE_OVERFLOW_LIKELY
	NE_TERMINATION_FAILURE
	NE_TOTAL_PRECISION_LOSS
	NW_SOME_PRECISION_LOSS
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

